Departments of Physics & Applied Physics

Work: 773.702.9661

Varian 232 Stanford University 382 Via Pueblo Mal Stanford CA, 94305		Cell: 857.928.4132 jonsimon@stanford.edu
Academic Appointments	Departments of Physics & Applied Physics Professor Associate Professor Director, Q-FARM	Stanford University 2024-Present 2022-2024 2022-Present
	Department of Physics, The James Franck Institute, The Pritzker School of Molecular Engineering and The College Associate Professor Fellow, Institute for Molecular Engineering Neubauer Family Assistant Professor	University of Chicago 2018-2022 2016-2020 2012-2018
	Postdoctoral Scholar Group of Prof. Markus Greiner	Harvard University 2010-2012
	Quantum magnetism in an optical lattice, bilayer imaging, algorithmi lattice gases, photon-assisted tunneling, atom-resolved studies of the transition.	
Education	Ph.D. in Physics, Harvard University Dissertation: <i>Cavity QED with Atomic Ensembles</i> (Advisor: Vladan Vu	March 2010 lletić).
	Single photon source, quantum bus, quantum memory, vacuum inc photon nonlinearities.	luced transparency and few
	B.S. in Physics, California Institute of Technology	June 2004
Honors and Awards	 Fellow of the American Physical Society Presidential Early Career Award in Science and Engineering (PECA Defense Advanced Research Projects Agency Young Faculty Award Department of Energy Young Investigator Award (DOE YIA) Air Force Office of Scientific Research Young Investigator Program (Martin and Beate Block Award, Aspen Center for Physics AAAS Newcomb Cleveland Prize National Science Foundation Graduate Research Fellowship National Defense Science & Engineering Graduate Fellowship Harvard Purcell Fellowship Caltech Upperclass Merit Award– Carnation Fellowship Intel Science Talent Search Finalist 	(DARPA YFA) 2013 2013
Service to the Community	 QSense External Advisory Board, 2022-Present Chair, JILA Cooperative Agreement Independent Review Panel, 202 	21

	 Lavanya Taneja: Graduate Student, UChicago Lukas Palm: Graduate Student, UChicago Danial Shadmany: Graduate Student, UChicago Anna Soper: Graduate Student, Stanford Bowen Li: Graduate Student, Stanford 2023-Present
	Current Doctoral and Post-Doctoral Researchers (* indicates co-advised with Dave Schuster):• Zeyang Li: Urbanek & Chodorow Postdoctoral Fellow, Stanford2023-Present• Marius Juergensen: Postdoctoral Researcher, Stanford2024-Present• Guanzhong Wang: Postdoctoral Researcher, Stanford2024-Present• Adam Shaw: Postdoctoral Researcher, Stanford2024-Present
Advisors and Advisees	 Supervisors: Vladan Vuletić: PI's graduate supervisor Markus Greiner: PI's principal postdoctoral sponsor
Teaching Experience	 PH 216 Stanford Graduate Back of the Envelope Physics AP 203 Stanford Graduate Atoms & Photons Ph 471 UChicago Graduate Atomic Physics Ph 211 UChicago Undergraduate Physics Laboratory Winter 2014, Spring 2016, Fall 2018, Fall 2019, Spring 2020, Fall 2020 Ph 257 UChicago Undergraduate Introduction to Feedback and Control Ph 142 UChicago Undergraduate Honors Electricity & Magnetism Ph 143 UChicago Undergraduate Honors Vibration, Waves & Heat Ph 361 UChicago Graduate Solid State Physics
Service at the University of Chicago	 James Franck Institute Research Resumption Committee (2020-2021) Physics Department Faculty Excellence Committee (2020-2021) Physical Sciences Division Research Resumption Committee (2020) Chair, James Franck Institute Seminar Committee (2013-2017, 2019-2021) James Franck Institute Appointments Committee (2018-2021) Admissions Committee (2012-2013,2014-2017,2019-2021) Physics Recruitment Committee (2015-20) University of Chicago Board of Computing Activities and Services (2016-2019) Physical Sciences Division Recruitment Committee (2012-2013, 2015-2016) Physics Department Colloquium Committee (2012-2013, 2015-2016) New Faculty Search Committee (2013-14, 2016-17, 2018-19) PhD. Thesis Defense Committee (25) (2012-Present)
	 Virtual Atomic Molecular and Optical Physics (VAMOS) seminar series board member, 2020-Present Les Houches Summer School: Quantum Technologies with Light and Matter Lecturer, 2020 Oklahoma State University Presidential Dream Course, Lecturer, 2020 Les Houches Summer School: Dynamics and Disorder in Quantum Manybody Systems far from Equilibrium, Lecturer, 2019 ITAMP Winter School: Quantum Many-Body Systems, Lecturer, 2019 US-Japan Joint Seminar in Quantum Electronics and Laser Spectroscopy, 2021 Meeting Chair Gordon Research Conference in Quantum Science, 2022 Meeting Chair Lecturer at ETH Cavity Quantum Electrodynamics Summer School, 2017 AMO Lecturer at Midwest Cold Atom Workshop, 2016 Session Chair, DAMOP 2013 (Quebec City, Canada), DAMOP 2014 (Madison, Wisconsin), DAMOP 2016 (Providence, Rhode Island), DAMOP 2018 (Fort Lauderdale, Florida) Reviewer for Nature (& sub-journals), Science, Proceedings of the National Academy of Sciences, Physical Review Journals, New Journal of Physics

 Cady Feng: Graduate Student, Stanford Abhishek Karve: Graduate Student, Stanford Da-Yeon Koh: Graduate Student, Stanford Xin Wei: Graduate Student, Stanford 	2024-Present 2024-Present 2024-Present 2024-Present
 Former Doctoral and Post-Doctoral Researchers: Ariel Sommer: Grainger Postdoctoral Fellow, UChicago Ruichao (Alex) Ma: Kadanoff-Rice Postdoctoral Fellow*, UChicago Logan Clark: Postdoctoral Researcher, UChicago Matt Jaffe: Postdoctoral Researcher, UChicago Marius Andrei Vrajitoarea: Postdoctoral Researcher* UChicago Aishwarya Kumar: Postdoctoral Researcher*, UChicago 	2013-2016 2015-2019 2017-2020 2019-2023 2020-2023 2019-2023
 Albert Ryou: PhD, UChicago Ningyuan Jia: PhD, UChicago Alexandros Georgakopoulos: PhD, UChicago Clai Owens: PhD, UChicago* Nathan Schine: PhD, UChicago Aziza Suleymanzade: PhD, UChicago* Mark Stone: PhD, UChicago* Brendan Saxberg: PhD, UChicago* Claire Baum: PhD, UChicago Margaret Panetta: PhD*, UChicago Gabrielle Roberts: PhD*, UChicago Chuan Yin: PhD, UChicago 	$\begin{array}{c} 2012-2017\\ 2013-2018\\ 2012-2018\\ 2013-2019\\ 2013-2019\\ 2013-2019\\ 2014-2021\\ 2015-2021\\ 2016-2022\\ 2016-2022\\ 2016-2022\\ 2019-2023\\ 2018-2023\\ 2018-2023\\ 2018-2023\\ \end{array}$

Current Undergraduates Researchers:

Former Undergraduate Researchers (UChicago): Aaron Krahn (2012-2014), Graham Greve (2012-2014), Lindsay Bassman (2012-2014), Jeremy Seeman (2012), Michael Cervia (2013-2016), Jin Woo Sung (2013-2014), Jeremy Estes (2014-5), Sohini Upadhyay (2014-2015), Michelle Chalupnik (2015-2017), Tahoe Schrader (2015-2016), Jeremy Estes (2015-2016), Sarayu Narayan (2016-18), Scott Eustice (2015-2017), Aman LaChapelle (2015-2017), Yuehui (Leon) Lu (2016-2017), Jared Beh (2017), Joshua Wakefield (2016-2018), Evan Mata (2016-2018), Carl Padgett (2017-2019), Lin Su (2017-2019), Shiv Agrawal (2018), Jasmine Kalia (2017-2020), Dawit Belayneh (2019-2021). Tingran Wang (2019-2023), Vassilios Kaxiras (2023), Kapil Dheeriya (2023).

Peer-Reviewed Publications

- 1. Lavanya Taneja, David Schuster, and Jon Simon, Light-controlled strong coupling of optical cavity modes spaced by 200 THz, arXiv 2503.00833 (2025).
- Bowen Li, Lukas Palm, Marius Jürgensen, Yiming Cady Feng, Markus Greiner, and Jon Simon, A Mega-FPS low light camera, arXiv 2502.18716 (2025).
- 3. Danial Shadmany, Aishwarya Kumar, Anna Soper, Lukas Palm, Chuan Yin, Henry Ando, Bowen Li, Lavanya Taneja, Matt Jaffe, David I Schuster, and Jonathan Simon, **Cavity QED** in a High NA Resonator, *Sci. Adv.* 11, eads8171 (2025).
- 4. Alexander Anferov, Fanghui Wan, Shannon P. Harvey, Jonathan Simon, and David I Schuster, A Millimeter-Wave Superconducting Qubit, arXiv 2411.11170, (2024).
- Gabrielle Roberts, Andrei Vrajitoarea, Brendan Saxberg, Margaret G. Panetta, Jonathan Simon, and David I Schuster, Manybody Interferometry of Quantum Fluids, Sci. Adv. 10, eado1069 (2024).
- 6. Sasha Anferov, Shanon P Harvey, Fanghui Wan, Jonathan Simon, and David I Schuster, Superconducting Qubits Above 20 GHz Operating over 200 mK, arXiv 2402.03031,

(2024).

- Sasha Anferov, Shanon P Harvey, Wendy Wan, Kan-Heng Lee, Jonathan Simon, and David I Schuster, Low-loss millimeter-wave resonators with an improved coupling structure, arXiv 2311.01670, (2023).
- Alexander Anferov, Kan-Heng Lee, Fang Zhao, Jonathan Simon and David I Schuster, Improved Coherence in Optically-Defined Niobium Trilayer Junction Qubits, arXiv 2306.05883 (2023).
- Aishwarya Kumar, Aziza Suleymanzade, Mark Stone, Lavanya Taneja, Alexander Anferov, David I. Schuster, and Jonathan Simon, Quantum-enabled millimetre wave to optical transduction using neutral atoms, *Nature* 615, 614–619 (2023).
- Chuan Yin, Henry Ando, Mark Stone, Danial Shadmany, Anna Soper, Matt Jaffe, Aishwarya Kumar and Jonathan Simon A Cavity Load Lock Apparatus for Next-Generation Quantum Optics Experiments, arXiv: 2301.12323 (2023).
- 11. Claire Baum, Matt Jaffe, Lukas Palm, Aishwarya Kumar and Jonathan Simon, **Optical mode** conversion via spatiotemporally modulated atomic susceptibility, *Opt. Express* 31, 528-535 (2023).
- Brendan Saxberg, Andrei Vrajitoarea, Gabrielle Roberts, Meg Panetta, Jonathan Simon and David Schuster, Disorder-Assisted Assembly of Strongly Correlated Fluids of Light, *Nature* 612, 435–441 (2022).
- Matt Jaffe, Lukas Palm, Claire Baum, Lavanya Taneja, Aishwarya Kumar, and Jonathan Simon, Understanding and suppressing backscatter in optical resonators, Optica 8, 878 (2022).
- Clai Owens, Margaret G. Panetta, Brendan Saxberg, Gabrielle Roberts, Srivatsan Chakram, Ruichao Ma, Andrei Vrajitoarea, Jonathan Simon, and David Schuster, Chiral Cavity Quantum Electrodynamics, Nature Physics 18, 1048–1052 (2022).
- R. O. Umucahlar, Jonathan Simon, and Iacopo Carusotto, Autonomous stabilization of photonic Laughlin states through angular momentum potentials, *Phys. Rev. A* 104, 023704 (2021).
- Matt Jaffe, Lukas Palm, Claire Baum, Lavanya Taneja, and Jonathan Simon, Aberrated optical cavities, *Phys. Rev. A* 104, 013524 (2021).
- 17. Mark Stone, Aziza Suleymanzade, Lavanya Taneja, David Schuster, and Jonathan Simon, Optical mode conversion in coupled Fabry-Pérot resonators, Optics Letters 46, 21-24 (2021).
- Iacopo Carusotto, Andrew Houck, Alicia J. Kollár, Pedram Roushan, David Schuster, and Jonathan Simon, Photonic materials in circuit quantum electrodynamics. *Nature Physics* 16, 268–279 (2020).
- Aziza Suleymanzade, Alexander Anferov, Mark Stone, Ravi K. Naik, Jonathan Simon, and David Schuster, A tunable High-Q millimeter wave cavity for hybrid circuit and cavity QED experiments. *Appl. Phys. Lett.* 116, 104001 (2020).
- Alexander Anferov, Aziza Suleymanzade, Andrew Oriani, Jonathan Simon and David Schuster, Millimeter-Wave Four-Wave Mixing via Kinetic Inductance for Quantum Devices. *Phys. Rev. Applied* 13, 024056 (2020).
- Logan W Clark, Nathan Schine, Claire Baum, Ningyuan Jia and Jonathan Simon, Observation of Laughlin states made of light. *Nature* 582, 41-45 (2020). [Featured in a Nature "News and Views"].
- Logan Clark, Ningyuan Jia, Nathan Schine, Claire Baum, Alexandros Georgakopoulos, Jonathan Simon, Interacting Floquet Polaritons. Nature 571, 532–536 (2019).

- Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Mohammad Hafezi, Ling Lu, Mikael Rechtsman, David Schuster, Jonathan Simon, Oded Zilberberg, Iacopo Carusotto, Topological Photonics. *Rev. Mod. Phys.* 91, 015006 (2019).
- Ruichao Ma, Brendan Saxberg, Clai Owens, Nelson Leung and Yao Lu, Jonathan Simon and David Schuster, A Dissipatively Stabilized Mott Insulator of Photons. *Nature* 566, 51-57 (2019) [Featured in a Nature "News and Views"].
- 25. Leon Lu, Ningyuan Jia, Lin Su, Clai Owens, Gediminas Juzeliunas, David Schuster, Jonathan Simon, Probing the Berry Curvature and Fermi Arcs of a Weyl Circuit. Phys. Rev. B 99, 020302 (2019) [Featured as an Editor's Suggestion on the PRB Frontpage].
- Nathan Schine, Michelle Chalupnik, Tankut Can, Andrey Gromov, Jonathan Simon, Measuring Electromagnetic and Gravitational Responses of Photonic Landau Levels. Nature 565, 173-179 (2019).
- Alexandros Georgakopoulos, Ariel Sommer, Jonathan Simon, Theory of Interacting Cavity Rydberg Polaritons. Quantum Science and Technology, 4, 1 (2018).
- Ningyuan Jia, Nathan Schine, Alexandros Georgakopoulos, Albert Ryou, Ariel Sommer, Jonathan Simon, A Strongly Interacting Polaritonic Quantum Dot. Nature Physics 14, 550 (2018).
- Peter A. Ivanov, Fabian Letscher, Jonathan Simon, Michael Fleischhauer, Adiabatic flux insertion and growing of Laughlin states of cavity Rydberg polaritons. *Phys. Rev.* A 98, 013847 (2018).
- 30. Jia Ningyuan, Nathan Schine, Alexandros Georgakopoulos, Albert Ryou, Ariel Sommer, Jonathan Simon, Photons and polaritons in a broken-time-reversal non-planar resonator. Phys. Rev. A 97, 013802 (2018). [Selected for an APS "Physics Focus" and Nature Photonics "Highlight"]
- Clai Owens, Aman LaChapelle, Brendan Saxberg, Brandon Anderson, Ruichao Ma, Jonathan Simon, David I, Schuster, Quarter-Flux Hofstadter Lattice in Qubit-Compatible Microwave Cavity Array. *Phys. Rev. A* 97, 013818 (2018).
- Ruichao Ma, Clai Owens, Andrew Houck, David I. Schuster, Jonathan Simon, An Autonomous Stabilizer for Incompressible Photon Fluids and Solids. *Phys. Rev. A* 95, 043811 (2017).
- Ruichao Ma, Clai Owens, Aman LaChapelle, David I. Schuster, Jonathan Simon, Hamiltonian Tomography of Photonic Lattices. *Phys. Rev. A* 95, 062120 (2017).
- 34. Albert Ryou, Jonathan Simon, Active Cancellation of Acoustical Resonances with an FPGA FIR Filter. *Rev. Sci. Inst.* 88, 013101 (2017).
- Brandon M. Anderson, Ruichao Ma, Clai Owens, David I. Schuster, Jonathan Simon, Engineering Topological Many-Body Materials in Microwave Cavity Arrays. *Phys. Rev.* X 6, 041043 (2016).
- Nathan Schine, Albert Ryou, Andrey Gromov, Ariel Sommer, Jonathan Simon, Synthetic Landau Levels for Photons. *Nature* 534, 671-5 (2016).
- Jia Ningyuan, Alexandros Georgakopoulos, Albert Ryou, Nathan Schine, Ariel Sommer, Jonathan Simon, Observation and characterization of cavity Rydberg polaritons. *Phys. Rev.* A. 93, 041802(R) (2016).
- Ariel Sommer, Jonathan Simon, Engineering Photonic Floquet Hamiltonians through Fabry Pérot Resonators. New Journal of Physics 18, 035008 (2015).
- Ariel Sommer, Hanspeter Buchler, and Jonathan Simon, Quantum Crystals and Laughlin Droplets of Cavity Rydberg Polaritons. arXiv: 1506.00341 (2015).

- Ningyuan Jia, Ariel Sommer, David Schuster, and Jonathan Simon, Time- and Site-Resolved Dynamics in a Topological Circuit. *Phys. Rev. X* 5, 021031 (2015). [Highlighted in the "Condensed Matter Journal Club"]
- Philipp M. Preiss, Ruichao Ma, M. Eric Tai, Jonathan Simon, Markus Greiner, Quantum gas microscopy with spin, atom-number, and multilayer readout. *Phys. Rev. A* 91, 041602(R) (2015).
- 42. Andrew Daley, Jonathan Simon Effective three-body interactions via photon-assisted tunneling in an optical lattice. *Phys. Rev. A* 89, 053619 (2014).
- Hannes Pichler, Johannes Schachenmayer, Jonathan Simon, Peter Zoller, Andrew J. Daley, Dressed, noise- or disorder- resistant optical lattices. *Phys. Rev. A* 86, 051605(R) (2012).
- 44. Waseem S. Bakr, Philipp M. Preiss, M. Eric Tai, Ruichao Ma, Jonathan Simon, Markus Greiner, Orbital excitation blockade and algorithmic cooling in quantum gases. *Nature* 480, 500-503 (2011) [Selected for a Nature "News and Views"]
- Haruka Tanji-Suzuki, Wenlan Chen, Renate Landig, Jonathan Simon, Vladan Vuletić, Vacuum Induced Transparency. *Science* 333, 1266-1269 (2011). [Selected for a Science "Perspective" and a Nature Photonics "News and Views"]
- Ruichao Ma, M. Eric Tai, Philipp M. Preiss, Waseem S. Bakr, Jonathan Simon, Markus Greiner, Photon-Assisted Tunneling in a Biased, Strongly Correlated Bose Gas. *Phys. Rev. Lett.* 107, 095301 (2011).
- Jonathan Simon, Waseem S. Bakr, Ruichao Ma, M. Eric Tai, Philipp M. Preiss, Markus Greiner, Quantum Simulation of Antiferromagnetic Spin Chains in an Optical Lattice. *Nature* 472, 307-312 (2011). [Selected for a Nature "News and Views"]
- Waseem S. Bakr, Amy Peng, M. Eric Tai, Ruichao Ma, Jonathan Simon, Jonathon Gillen, Simon Fölling, Lode Pollet, Markus Greiner, Probing the Superfluid-to-Mott-Insulator Transition at the Single-Atom Level. Science 329, 547-550 (2010). [Selected for a Science "Perspective"]
- Haruka Tanji, Saikat Ghosh, Jonathan Simon, Benjamin Bloom, and Vladan Vuletić, Heralded Single-Magnon Quantum Memory for Photon Polarization States. *Phys. Rev. Lett.* 103, 043601 (2009). [Selected for a PRL "Viewpoint"]
- Jonathan Simon, Haruka Tanji, Saikat Ghosh, Vladan Vuletić, Single-photon bus connecting spin-wave quantum memories. Nat. Phys. 3, 765 (2007).
- 51. Vladan Vuletić, James Thompson, Adam T. Black, and Jonathan Simon, External-feedback laser cooling of molecular gases. *Phys. Rev. A* 75, 051405(R) (2007).
- Jonathan Simon, Haruka Tanji, James K. Thompson, and Vladan Vuletić, Interfacing Collective Atomic Excitations and Single Photons. *Phys. Rev. Lett.* 98, 183601 (2007).
- 53. Huanqian Loh, Yu-Ju Lin, Igor Teper, Marko Cetina, Jonathan Simon, James K. Thompson, Vladan Vuletić, Influence of grating parameters on the linewidths of external-cavity diode lasers. Appl. Opt., Vol. 45, Issue 36, 9191–9197 (2006).
- James K. Thompson, Jonathan Simon, Huanqian Loh, Vladan Vuletić, A High-Brightness Source of Narrowband, Identical-Photon Pairs. Science 313, 74–77 (2006).

Other Publications

- Jonathan Simon, Magnetic Fields without magnetic fields. *Nature News and Views* 515 (2014).
- Jonathan Simon, Markus Greiner, A Duo of Graphene Mimics. Nature News and Views 483 (2012).
- Haruka Tanji-Suzuki, Ian D. Leroux, Monika H. Schleier-Smith, Marko Cetina, Andrew Grier, Jonathan Simon, Vladan Vuletić, Interaction between Atomic Ensembles and Optical Resonators: Classical Description. Adv. At. Mol. Opt. Phys 60, 201-237 (2011).

• Haruka Tanji, Jonathan Simon, Saikat Ghosh, Benjamin Bloom, Vladan Vuletić, Heralded atomic-ensemble quantum memory for photon polarization states. *Phys. Scr.* T 135, 014010 (2009).

Research Talks

- 1. Invited Lecturer, SIF International School of Physics "Enrico Fermi", Varenna, Como Lake, Italy, July 2024; A Brief Introduction to Superconducting Circuits: Quantum Simulation & Computing.
- 2. Invited Lecturer, Cal-Bay Quantum School, TUM Institute for Advanced Study, Garching, Germany, June 2024; Racing to the Bottom: Low Finesse, Small Waist Cavity QED.
- 3. Invited Lecturer, Siegman International School on Lasers, Stanford University, Stanford CA, June 2024; *Quantum Computing*.
- 4. Invited Speaker, MIT Physics Colloquium, Cambridge Massachusetts, March 2024 Probing Quantum Matter with Cats.
- 5. Invited Speaker, Topological phases and strong correlations in many-body systems and light-matter hybrids, Harvard ITAMP, Cambridge, Massachusetts, November 2023 *Probing Quantum Matter with Cats.*
- 6. Invited Speaker, International Conference on quantum simulation, Ecole Polytechnique/The Internet, November 2023 *Quantum Matter in Cavity QED*.
- 7. Invited Speaker, University of Victoria Colloquium, The Internet, October 2023 Probing Quantum Matter with Cats & Atomic Quantum Transduction.
- 8. Invited Speaker, BEC 2023, Sant Feliu de Guixols, Spain, September 2023 Probing Quantum Matter with Cats.
- 9. Invited Speaker, Munich Center for Quantum Science and Technology Annual Retreat, Santhofen, Germany, June 2023; Cavity QED from Many-body Physics to Transduction.
- 10. Invited Speaker, CLEO Tutorial, San Jose California, May 2023; New Regimes of Cavity QED Transduction to Manybody Physics.
- 11. Invited Speaker, Stanford University Photonics Retreat, Asilomar Conference Grounds, April 2023; Cavity QED from Many-body Physics to Transduction.
- Invited Speaker, Many-body Physics with Synthetic Quantum Systems, Princeton Center for Theoretical Physics, Princeton, NJ, April 2023; Making & Probing Photon Fluids and Solids.
- 13. Invited Speaker, CUBit Seminar, JILA/University of Colorado, Boulder, April 2023; Cavity QED from Many-body Physics to Transduction.
- 14. Invited Speaker, Quantum Control of Light, Physikzentrum Bad Honnef, March 2023; *Quantum Matter in Circuit QED*.
- 15. Invited Speaker, MIT iQUISE Seminar, February 2023; Cavity QED from Manybody Physics to Transduction.
- 16. Invited Speaker, JQI Seminar, College Park, Maryland, November 2022; Making Fluids and Solids from (Microwave) Photons.
- 17. Invited Speaker, ICFO Colloquium, Barcelona, Spain November 2022; Making Fluids and Solids from (Microwave) Photons.
- 18. Invited Speaker, SLAC Colloquium, Stanford, California October 2022; Making Fluids and Solids from (Microwave) Photons.
- 19. Invited Speaker, Purdue Physics Colloquium, Urbana, Illinois, October 2022; Making Fluids and Solids from (Microwave) Photons.
- 20. Invited Speaker, UIUC Physics Colloquium, Urbana, Illinois, October 2022; Making Fluids and Solids from (Microwave) Photons.

- Invited Speaker, Q-FARM Seminar, Stanford, California, October 2022; Cavity QED Manybody Physics to Transduction.
- 22. Invited Speaker, The 27th International Conference on Atomic Physics, Toronto, Canada, July 2022; Multimode Cavity QED: Few-body Physics to Transduction.
- Invited Speaker, University of California, Berkeley Physics Colloquium, Berkeley, California, April 2022; Making Quantum Matter from Light: Laughlin Puddles, Mott Insulators, and Strongly Interacting Fluids.
- Invited Speaker, University of Toronto Physics Colloquium, Toronto, Canada, March 2022; Making Quantum Matter from Light: Laughlin Puddles, Mott Insulators, and Strongly Interacting Fluids.
- 25. Invited Speaker, March Meeting, Chicago, Illinois, March 2022; Quantum Simulation with Photons: Laughlin Puddles, Mott Insulators, and Strongly Interacting Fluids.
- Invited Speaker, Simons Collaboration on Ultra-Quantum Matter, Flatiron Institute, New York, New York, January 2022; Making Quantum Matter from Light: Laughlin Puddles, Mott Insulators, and Strongly Interacting Fluids.
- 27. Invited Speaker, Benasque Conference: Topology meets Quantum Optics, June 2021; Topological Cavity QED: Laughlin Molecules and Chern Circuits.
- 28. Invited Speaker, Heidelberg Physics Colloquium, May 2021; When Photons Self-Organize: Making Matter from Light.
- 29. Invited Speaker, Virtual Science Forum Long Range Colloquium, May 2021; When Photons Self-Organize: Making Matter from Light.
- Invited Speaker, Pittsburgh Quantum Institute 2021, Pittsburgh, Pennsylvania, March 2021; When Photons Self-Organize: Making Matter from Light.
- Invited Speaker, University of Stuttgart Physics Colloquium, Stuttgart, Germany, December 2020; When Photons Self-Organize: Laughlin Molecules and Mott Insulators.
- 32. Invited Speaker, New York University Physics Colloquium, New York, New York, October 2020; When Photons Self-Organize: Laughlin Molecules and Mott Insulators.
- 33. Invited Speaker, University of Chicago Physics Colloquium, Chicago, Illinois, October 2020; When Photons Self-Organize: Laughlin Molecules and Mott Insulators.
- 34. Invited Speaker, City College of New York Physics Colloquium, Manhattan, New York, September 2020; *Making Matter from Light*.
- 35. Invited Speaker, Columbia Pro-QM Zeminar, Manhattan, New York, July 2020; Making Matter from Light.
- 36. Invited Speaker, REU Seminar, The University of Chicago, June 2020; Making Matter from Light.
- 37. Invited Speaker, Virtual DAMOP 2020, Portland, Oregon, June 2020; Making Quantum Matter from Light.
- 38. Invited Speaker, Virtual Atomic Molecular and Optical Physics Seminar (VAMOS), The Internet, Earth, May 2020; *Making Quantum Matter from Light*.
- Invited Speaker, University of Cambridge Physics Colloquium, Cambridge, UK, April 2020; Making Quantum Matter from Light: Photon Crystals & Laughlin Molecules.
- 40. Invited Speaker, Perimeter Institute Physics Seminar, Waterloo, Canada, April 2020; Making Quantum Matter from Light: Photon Crystals & Laughlin Molecules.
- 41. Invited Speaker, Weizmann Institute AMO Seminar, Rehovot, Israel, February 2020; Making Quantum Matter from Light: Photon Crystals & Laughlin Molecules.
- 42. Invited Speaker, Minerva-Gentner Symposium: Quantum Simulations Using Photons, Atoms, and Molecules; Tze'elim, Israel, February 2020; *Making Matter From Light*.

- 43. Invited Speaker, University of Texas at Austin Physics Colloquium; Austin, TX, October 2019; Making Matter From Light: Photon Crystals & Topological Molecules.
- 44. Invited Speaker, KITP Conference on Topological Quantum Matter: From Fantasy to Reality, Santa Barbara, CA, October 2019; *Making Topological Matter from Light*.
- 45. Session Chair, 2019 Israeli-American Kavli Frontiers of Science Symposium; Jerusalem, Israel, September 2019 What is the "Quantum World" What has it got to do with "Ultracold Atoms"?.
- Tutorial Speaker, Dynamics and Disorder in Quantum Manybody Systems far from Equilibrium; Ecole des Houches, France, August 2019 Design Principles for Photonic Quantum Matter: Platforms, Probes, and Prospects.
- Invited Speaker, Designing Artificial Quantum Matter 2019; San Sebastian, Spain, July 2019 Making Quantum Matter from Light: Photon Crystals & Laughlin Molecules.
- Invited Speaker, KITP Conference on Exploring Open Quantum Systems in Quantum Simulators, Santa Barbara, CA, April 2019; Routes to Photonic Quantum Matter: Photon Crystals & Laughlin Molecules.
- Invited Speaker, Stanford Physics/Applied Physics Colloquium; Stanford, CA, April 2019; Making Matter From Light: Photon Crystals & Topological Molecules.
- 50. Invited Speaker, Kavli Nanoscience Institute Distinguished Seminar Series; Pasadena, CA, April 2019; Making Matter From Light: Photon Crystals & Topological Molecules.
- Invited Speaker, ITAMP Winter School 2019: Quantum Many-body Systems; Biosphere 2, AZ, March 2019; Creating Materials from Light.
- 52. Invited Speaker, Solvay Conference in Quantum Simulation; Brussels, Belgium, February 2019; First Light on Photonic Materials.
- 53. Invited Speaker, Workshop on Precision Manybody Physics; Amherst, Massachusetts, October 2018; *First Light on Photonic Materials*.
- 54. Invited Speaker, US-Japan QELS-13: Quantum simulation, metrology, and computing in atomic and optical systems; Kanazawa, Japan, September 2018; *First Light on Strongly Correlated Photonic Materials*.
- Invited Speaker, Gordon Research Conference: Non-Equilibrium Quantum Matter and Scalable Quantum Computing; Stonehill College, MA, July 2018; Exploring Matter Made of Light.
- Invited Speaker, SU²P/SPRC Workshop: Dynamics and Dissipation in Quantum Simulation; Stanford, CA, July 2018; Making Materials from Light.
- 57. Invited Speaker, Quantum Fluids of Light and Matter; Les Houches, France, June 2018; Photon Mott Insulators, etc....
- 58. Invited Speaker, FOR 2247: Long-Range Workshop 2018; Hanover, Germany, June 2018; Introduction to Experiments with Strongly Interacting Polaritons (and Floquet Polaritons).
- Invited Speaker, Center for Ultracold Atoms Seminar; Harvard/MIT CUA, Cambridge, MA, April 2018; Exploring Matter Made of Light.
- Invited Lecturer, Novel Paradigms in Many-Body Physics from Open Quantum Systems; Max Planck Institute for the Physics of Complex Systems, Dresden Germany, March 2018; Making Materials from Light.
- Invited Speaker, Condensates of Light; Wilhelm und Else Heraeus-Stiftung, January 2018; Topological and Strongly Correlated Photons.
- Invited Speaker, POTUS- Quantum: AI, Fundamentals, & Technologies; Caltech & SpaceX, January 2018; Exploring Materials Made of Light.
- Invited Speaker, Croucher Conference on Frontiers of Cold Atom Physics; Hong Kong University, Hong Kong, December 2017; Building Quantum Matter from Light.

- 64. Invited Speaker, Stony Brook Physics Colloquium; Stony Brook, NY, October 2017; Building Correlated and Topological Matter from Light.
- 65. Invited Speaker, Stony Brook AMO Seminar; Stony Brook, NY, October 2017; An Introduction to Topological Photonics.
- 66. Invited Speaker, Many Body Cavity QED; Cambridge, MA, October 2017; Building Topological Quantum Matter from Photons and Polaritons.
- 67. Invited Speaker, JQI Seminar, College Park, MD, September 2017; Building Correlated and Topological Quantum Matter from Light.
- 68. Invited Speaker, Cavity QED Summer School; Lausanne, Switzerland, September 2017; Building Quantum Materials from Light: Topological and Strongly Correlated Photons.
- 69. Invited Speaker, BEC 2017; Sant Feliu, Spain, September 2017; Building Topological Quantum Matter from Photons and Polaritons.
- Invited Speaker, NYU Frontiers in Emergent Quantum Phenomena; Manhattan NY, June 2017; Building Quantum Materials from Light: Polariton Blockade to Landau Levels in Curved Space.
- 71. Invited Speaker, DAMOP 2017; Sacramento, California, June 2017; *Photonic Landau Levels in Curved Space*.
- 72. Invited Speaker, QFLM at Institute of Scientific Studies of Cargèse: Quantum Fluids of Light and Matter, Corsica, France, May 2017; Topological Photonic Quantum Materials: Landau Levels to Polariton Blockade.
- 73. Invited Speaker, University of Chicago Computations in Science, Chicago, Illinois, April 2017; Building Strongly Correlated Matter from Light.
- 74. Invited Speaker, UMass Amherst Physics Colloquium, Amherst, MA, April 2017; Topological Cavity QED: Photonics Landau Levels in Curved Space.
- 75. Invited Speaker, Emerging Optical Materials Workshop @ MIT Lincoln Labs, Lexington, MA, April 2017; Topological Cavity QED: Photonics Landau Levels in Curved Space.
- 76. Invited Speaker, ETH Physics Colloquium, Zurich, Switzerland, March 2017; Topological Physics in Curved Space: Twisted Cavities to Polariton Blockade.
- 77. Invited Speaker, Princeton Physics Colloquium, Princeton, New Jersey, March 2017; Topological Physics in Curved Space: Twisted Cavities to Polariton Blockade.
- 78. Invited Speaker, UC Berkeley AMO Seminar, Berkeley, California, February 2017; Building Quantum Matter from Light: from Topological Photonics to Polariton Blockade.
- Invited Speaker, University of Kaiserslautern Physics Colloquium, Kaiserslautern, Germany, February 2017; Building Quantum Matter from Light: from Topological Photonics to Polariton Blockade.
- 80. Invited Speaker, Aspen Center for Physics: Topological Meta-Materials, Aspen, CO, January 2017; Building Quantum Matter from Light: from Topological Photonics to Polariton Blockade.
- Invited Speaker, KITP Conference on Universality in Few-Body Systems, Santa Barbara, CA, December 2016; Building Quantum Materials from Light.
- Invited Speaker, Frontiers in Optics/Laser Science Conference (FiO/LS), Rochester, NY, October 2016; Topological Cavity QED: Landau Levels in Curved Space to Microwave Chern Insulators.
- Invited Speaker, KITP Conference on Topological Quantum Matter, Santa Barbara, CA, October 2016; Landau Levels in Curved Space.
- 84. Invited Speaker, SPRC Symposium: Session on Collective Phenomena in Quantum Systems; Stanford, CA, September 2016; *Topological Photonics Landau Levels in Curved Space*

- 85. Invited Speaker, MURI Workshop on Synthetic Quantum Materials, and Quantum Dynamics of Atomic Gases, UChicago Eckhardt Center, September 2016; *Topological Cavity QED:* Landau Levels in Curved Space.
- 86. Invited Speaker, KITPC Workshop: Synthetic Topological Materials, Chinese Academy of Sciences, Beijing, China, August 2016; *Topological Cavity QED: Landau Levels in Curved Space*.
- 87. Invited Speaker, Harvard ITAMP: Connecting Few-body and Many-body Pictures of Fractional Quantum Hall Physics, Cambridge, MA, July 2016; *Topological Cavity QED: Landau* Levels in Curved Space to Microwave Chern Insulators.
- 88. Invited Speaker, Lorentz Center: Topological Physics at $\hbar = 0$: Photonic, Acoustic, and Mechanical Analogues of Electronic Topological Insulators, Leiden, Netherlands, May 2016; Landau Levels in Curved Space, (Topological Circuits & Microwave Chern Insulators).
- 89. Invited Speaker, Simons Center for Geometry and Topology Conference: Geometry of Quantum States in Condensed Matter, Stony Brook, NY, April 2016; Landau Levels in Curved Space: Topological Photonics in Twisted Resonators.
- Invited Speaker, University of Illinois, Urbana-Champagne, April 2016; Topological Photonics with Twisted Resonators and Braided Circuits.
- Invited Speaker, MPQ Colloquium, Garching, Germany, February 2016; Topological Photonics with Twisted Resonators and Braided Circuits.
- 92. Invited Speaker, CoQuS Colloquium, Vienna, Austria, November 2015; Topological Photonics with Twisted Resonators and Braided Circuits.
- Invited Speaker, UC/PKU Workshop on quantum condensed matter physics, Beijing, China, CA, October 2015; Topological Photonics with Twisted Resonators and Braided Circuits.
- 94. Invited Speaker, James Franck Institute Seminar, Chicago, IL, October 2015; Topological Photonics with Twisted Resonators and Braided Circuits.
- 95. Invited Speaker, KITP Conference on Non-equilibrium dynamics of strongly interacting photons, Santa Barbara, CA, October 2015; *Topological Photonics with Twisted Resonators and Braided Circuits*.
- Invited Speaker, 12th US-Japan Seminar on many body quantum systems, Madison, Wisconsin, September 2015; Topological Photonics with Twisted Resonators and Braided Circuits.
- Invited Speaker, Quantum Systems and Technology, Monte Verita, Switzerland, June 2015; Topological Photonics with Twisted Resonators and Braided Circuits.
- Invited Speaker, Aspen Center for Physics: Nonequilibrium Quantum Matter, Aspen, Colorado, March 2015; Progress Towards Topological Cavity Quantum Electrodynamics.
- 99. Invited Speaker, Strongly correlated fluids of light and matter, Trento Italy, January 2015; Topological Photonics: Braided Microwave Circuits and Twisted Resonators.
- 100. Invited Speaker, OSA Incubator on Topological Order of Photons, Washington DC, April 2014; Weaving (Quantum) Materials from Light.
- 101. Invited Speaker, Quantum Optics Obergurgl 2014, Obergurgl Austria, February 2014; Weaving Quantum Materials from Light: Towards Few-Body Physics in Multimode Rydberg Cavity QED.
- 102. Invited Speaker, Physics of Quantum Information, Snowbird Utah, January 2014; Weaving Quantum Materials from Light: Cold Atoms, Topological Circuits, Photons and Beyond.
- 103. Condensed Matter Seminar, Northwestern University, December 2013; Engineering Photonic Topological & Quantum Materials.
- 104. AMO Seminar, University of St. Andrews, October 2013; Weaving Quantum Materials from Light: Cold Atoms, Topological Circuits, Photons and Beyond.

- 105. AMO Seminar, University of Strathclyde, October 2013; Weaving Quantum Materials from Light: Cold Atoms, Topological Circuits, Photons and Beyond.
- 106. **REU Seminar**, University of Chicago, July 2013; Engineering Quantum- and Topological-Materials Cold Atoms, Quantum Circuits and Beyond.
- 107. AMO Seminar, University of Wisconsin. Madison, Wisconsin, February 2013; Engineering Synthetic Quantum Materials from Cold Atoms: Mott Insulators to Emergent Polariton Crystals.
- 108. AMO Seminar, University of Waterloo. Waterloo Ontario, Canada, January 2013; Engineering Quantum Materials from Cold Atoms: Mott Insulators to Emergent Crystals.
- 109. Physics Colloquium, University of Chicago. Chicago, Illinois, December 2012; Engineering Synthetic Quantum Materials from Cold Atoms: Mott Insulators to Emergent Polariton Crystals.
- 110. AMO Seminar, Northwestern University. Evanston, Illinois, November 2012; Engineering Synthetic Quantum Materials from Cold Atoms: Mott Insulators to Emergent Polariton Crystals.
- 111. Invited Speaker, Midwest Cold Atom Workshop. Champaign, Illinois, November 2012; Engineering Synthetic Quantum Materials from Cold Atoms: Mott Insulators to Emergent Polariton Crystals.
- 112. Invited Speaker, New Laser Scientist Conference. Rochester, New York, October 2012; Engineering Synthetic Quantum Materials from Cold Atoms: Mott Insulators to Emergent Polariton Crystals.
- 113. Invited Speaker, Quantum Walks, Quantum Simulators and Quantum Networks, Bonn, Germany, July 2012; Building Synthetic Materials From Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- 114. Invited Speaker, Quantum Systems and Technology Workshop. Monte Verita, Ascona Switzerland, June 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- 115. Physics Seminar, Boston University, Cambridge, Massachusetts, May 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- 116. Atomic Physics Seminar, Stanford University, Stanford California, March 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- 117. Atomic Physics Seminar, University of Illinois at Urbana-Champagne, February 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- 118. Colloquium, UMass Amherst, February 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- 119. AMO Seminar, University of Michigan, February 2012; Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- 120. Colloquium, Institute for Quantum Computing, Waterloo Ontario, Canada, February 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- 121. AMO Seminar, University of California Los Angeles, Los Angeles California, February 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- 122. Colloquium, Duke University, Durham, North Carolina, February 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- 123. Colloquium, Caltech, Pasadena CA, January 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- 124. AMO Seminar, Yale University, New Haven, Connecticut, January 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.

- 125. LAASP Seminar, Cornell University, Ithaca, New York, January 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- 126. AMO Seminar, Princeton University, Princeton, New Jersey, January 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- 127. Institute Seminar, James Franck Institute, University of Chicago, Chicago Illinois, January 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- 128. Invited Speaker, Aspen Center for Physics: New Directions in Ultracold Atomic Systems, January 2012, Aspen, Colorado; Atom-Resolved Many-Body Quantum Physics.
- 129. Invited Speaker, CifAR Quantum Materials Program Meet, Montreal Quebec Canada, October 2011; Engineering Synthetic Materials with Cold Atoms: Quantum Magnetism in an Optical Lattice.
- 130. AMO Seminar, Institute for Quantum Optics and Quantum Information, Innsbruck, Austria, September 2011; *Quantum Magnetism in an Optical Lattice*.
- 131. Invited Speaker, Strongly Correlated Electron Systems 2011, Cambridge, UK, September 2011; Mott Insulators to Quantum Magnets: Atom-By-Atom Imaging and Manipulation of Designer Condensed Matter.
- 132. Keynote Speaker, Photonics Ireland, Dublin Ireland, September 2011; Quantum Magnetism with Ultracold Atoms: A Microscopic View of Artificial Quantum Matter
- 133. Invited Speaker, Quantum phenomena in graphene, other low-dimensional materials, and optical lattices, Erice, Italy, August 2011; *Quantum Magnetism in an Optical Lattice*.
- 134. Invited Speaker, Minerva-Weizmann workshop on Entanglement in Atomic systems, Rohovot, Israel, November 2010; Probing the Superfluid to Mott Insulator Transition at the Single Site Level.
- 135. Colloquium, University of Connecticut Atomic Physics Seminar, Storrs, Connecticut, November 2010; Quantum Gas Microscope: Exploring the Superfluid to Mott Insulator Transition at the Single Atom Level.
- 136. Invited Speaker, CNLS Conference on Complexity and Disorder at Ultra-low Temperatures, Santa Fe, New Mexico, June 2010; Single-Site Probing of the Superfluid-Mott Insulator Transition with a Quantum Gas Microscope.
- 137. Invited Talk, Princeton-TAMU Symposium on Quantum Coherence and Laser Spectroscopy, Princeton, New Jersey, Mark 2007; Single Photons and Quantum Memories: Climbing the Dicke Ladder One Rung at a Time.